	S/		ESTER-I	SEMESTER-I	ğ	Tutorial
h	No. of Teaching days		rs Course	General Course	Class teaching in hours of	In hours
Month	No. of ching d	MTMACOR01T	MTMACOR02T	MTMGCOR01T	teac ours	
M	No ach	Marks:50+25=75	Marks:50+25=75	Marks:50+25=75	iss i hc	
	Tea	Calculus and Geometry	Algebra	Differential Calculus	Cla ir	
		and OrdinaryDifferential Equation Unit 1:	Unit -1 :	i) Limit and Continuity (ε and δ		
		i)Leibnitz Rule on diffn.	i)Polar rep. of complex numbers, nth	definition), Types of discontinuities, ii)	Hons-	HONS-4
20		ii)Point of Inflexion	roots of unity,	Differentiability of functions,	22	110113-4
200	27	iii) Envelopes	ii)De Moivre's theorem.	iii)Successive differentiation,	22	
July,2020		iv)Asymptote	iii) Theory of equations: Relation	Leibnitz's theorem.		
J		T T	between roots and coefficients,		Gen-	
			Transformation of equation.		16	
		Unit 1:	Unit -1 :			HONS-4
		v)Curve tracing	iv)Descartes rule of signs,			
		vi)L'Hospital's rule	v)Cubic (Cardan's method) and		Hons-	Graphical
	23	Unit- 2	biquadratic equations (Ferrari's		22	Demonstration
		i)Reduction Formulae	method).			(Teaching Aid)
		ii)Arc length of different curves iii) Area of surface of revolution	vi)Inequality : The inequality involving AM≥GM≥HM, Cauchy-			Plotting of graphs of
		iv) Techniques of sketching of	Schwartz inequality.			graphs of function
		conics	Unit -2:			Tunction
03		Comes	i) Relation, Partition		Gen-	
August,2020			ii) Mapping		16	
ıst,			, 11 6	iv) Partial differentiation, Euler's		
ngu				theorem on homogeneous functions		
Aı				v)Tangents and Normals,		

September,2020	24	Unit-3 i)Reduction of canonical form ii)Polar Equation of conic iii)Sphere iv)Conicoids	Unit -2: iii)Integer: Well-ordering property, Division algorithm, Divisibility and Euclidean algorithm. Congruence. iv)Principles of Mathematical Induction, statement of Fundamental Theorem of Arithmetic.	vi) Curvature, vii)Asymptotes, viii)Singular points, ix)Tracing of curves. Parametric representation of curves and tracing of parametric curves, Polar coordinates and tracing of curves in polar coordinates.	Hons- 18 Gen- 12	Hons-4 Graphical Demonstration (Teaching Aid) Plotting the graphs of polynomial of degree 4 and 5, the derivative graph, the second derivative graph and comparing
October,2020	17	Unit-3 v)Plane sections of conicoids vi))Generating lines vii) Graphing of standard quadric surfaces Unit -4: i)Exact Differential equation,	Unit -3: Linear Algebra: i) Systems of linear equations, row reduction and echelon forms Unit 4:, i) Vector equations, the matrix equation Ax=b,	x) Rolle's theorem, xi)Mean Value theorems	Hons- 15 Gen-6	them.

November,2020	08	Unit -4: ii)Integrating factors iii)Linear equation iv)Bernoulli equations	Unit 4:, ii) Matrix inverse of a matrix, characterizations of invertible matrices. iii) Rank of a matrix	xii)Taylor's theorem with Lagrange's and Cauchy's forms of remainder.	Hons-6	Hons-4 Graphical Demonstration (Teaching Aid) Sketching parametric curves (Eg. Trochoid, cycloid, epicycloids, hypocycloid).
Decembr, 2020	26	Graphical Demonstration (Teaching Aid)i)Tracing of conics in Cartesian coordinates/polar coordinates. vi)Sketching ellipsoid, hyperboloid of one and two sheets, elliptic cone, elliptic, paraboloid, and hyperbolic paraboloid using Cartesian coordinates.	Unit 4: iv)Eigen values, Eigen Vectors and Characteristic Equation of a matrix. v) Cayley-Hamilton theorem and its use in finding the inverse of a matrix.	xii)Taylor's series, Maclaurin's series of sin x, cos x, e ^x , log(l+x), (l+x) ⁿ vxi)Maxima and Minima, xv) Indeterminate forms	Hons- 16	Hons-4 Graphical Demonstration (Teaching Aid). iv) Obtaining surface of revolution of curves.

	S	SEME	STER-II	SEMESTER-II	ρũ	Tutorial
4	days	Honou	rs Course	General Course	shin s of	In hours
Month	No. of Teaching o	MTMACOR03T	MTMACOR04T	MTMGCOR02T	Class teaching in hours of	
2	o. of ach	Marks:50+25=75 Real Analysis	Marks:50+25=75 Differential Equation and Vector	Marks:50+25=75 Differential Equation	lass in b	
	N Te	rear r marysis	Calculus	Birroroman Equation	C	
January, 2021	21	Unit-1: i) Review of Algebraic and Order Properties of ℝ, ε-neighbourhood of a point in ℝ. Idea of countable sets, uncountable sets and	Unit-1: i) Lipschitz condition and Picard's Theorem (Statement only). ii) General solution of homogeneous equation of second order, principle of	 i) First order exact differential equations. Integrating factors, rules to find an integrating factor. ii) First order higher degree equations solvable for x, y, p. Methods for 	Hons- 17	Hons-5
Januai		unaccountability of ℝ. ii)Bounded above sets, Bounded below sets, Bounded Sets, Unbounded sets.	super position for homogeneous equation, Wronskian: its properties and applications,	solving higher-order differential equations.	Gen-9	
February,2021	22	Unit-1: iii) Suprema and Infima, Completeness Property of R and its equivalent properties. iv) The Archimedean Property, Density of Rational (and Irrational) numbers in R, Intervals. v) Limit points of a set, Isolated points, Open set, closed set, derived set, Illustrations of Bolzano-Weierstrass theorem for sets.	Unit-1: iii) Linear homogeneous and non- homogeneous equations of higher order with constant coefficients, Euler's equation. Unit -2: iv) Method of undetermined coefficients, method of variation of parameters.	iii) Basic theory of linear differential equations, Wronskian, and its properties. iv) Solving a differential equation by reducing its order. v) Linear homogenous equations with constant coefficients, vi) Linear non-homogenous equations, vii) The method of variation of parameters,.	Hons- 17 Gen-9	Hons-4

March,2021	26	Unit-1 :vi) compact sets in R, Heine- Borel Theorem. Unit-2: i)Sequences, Bounded sequence, Convergent sequence, Limit of a sequence, lim inf, lim sup. Limit Theorems. Monotone Sequences, Monotone Convergence Theorem.	 Unit-1: v) System of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant coefficients. 	viii) The Cauchy-Euler equation, Simultaneous differential equations, Total differential equations. ix)Order and degree of partial differential equations, Concept of linear and non-linear partial differential equations.	Hons- 20 Gen- 12	Hons-4
April,2021	23	Unit-2: ii) Subsequences, Divergence Criteria. Monotone Subsequence Theorem (statement only). iii)Bolzano Weierstrass Theorem for Sequences. iv) Cauchy sequence, Cauchy'sConvergence criterion.	Unit -2: vi) Basic Theory of linear systems in normal form, homogeneous linear systems with constant coefficients. vii) Two Equations in two unknown functions. Unit-3: i) Equilibrium points, Interpretation of the phase plane.	x) Formation of first order partial differential equations, Linear partial differential equation of first order, Lagrange's method, Charpit's method.	Hons- 17 Gen-9	Hons-4
May,2021	23	Unit-3: i) Infinite series, convergence and divergence of infinite series, Cauchy Criterion.	Unit-3: ii) Power series solution of a differential equation about an ordinary point, solution about a regular singular point.	xi) Classification of second order partial differential equations into elliptic, parabolic and hyperbolic through illustrations only.	Hons- 17 Gen-9	Hons-4
June,2021	26	Unit-3: ii) Tests for convergence: Comparison test, Limit Comparison test, Ratio Test, Cauchy's nth root test, Integral test. iii)Alternating series, Leibniz test. Absolute and Conditional convergence.	Unit- 4: i)Triple product, introduction to vector functions, operations with vector-valued functions ii) Limits and continuity of vector functions, differentiation and integration of vector functions.		Hons- 16 Gen-0	Hons-2

	S.	S	EMESTER-III		SEMESTER-III	IS		MTMACOR07	MTMSSEC01M (For both Hons
	g days	Н	onours Course		General Course	n hou		P	and General)
Month	of Teaching available	MTMACOR05T Marks:50+25=75 Theory of Real Functions	MTMACOR06T Marks:50+25=75 Group Theory–I	MTMACOR07T Marks:50(Th)+ 25(Prac) =75 Numerical Methods	MTMGCOR03T Marks:50+25=75 Real Analysis	Class teaching in hours	Tutorial in hours	Numerical Methods Lab (Marks : 25)	Marks:25 C-Programming Language.
	No. o					Class	Tutoria	List of practical (using C programming)	
July,2020	27	Unit 1:Limits of functions (ϵ - δ approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity and discontinuity.	Symmetries of a square, Dihedral groups, definition and examples of groups including permutation groups and quaternion groups (through matrices), elementary properties of groups.	Unit-1: Algorithms, Convergence, Errors: Relative, Absolute. Round off, Truncation. Methods based on interpolations, methods based on finite differences.	i)Finite and infinite sets, examples of countable and uncountable sets. Ii)Real line, bounded sets, suprema and infima, completeness property of R, Archimedean property of R, intervals. Concept of cluster points and statement of Bolzano-Weierstrass theorem.	Gen-16 Hons-22	Hons-4	i)Calculate the sum 1/1 + 1/2 + 1/3 + 1/4 + + 1/ N. ii)Enter 100 integers into an array and sort them in an ascending order.	Unit 1: Basics of Computer Programming: Definition, Requirement of programming language, Machine language, high-level programming languages, machine code of a program: compilation process, Problem solving approaches: algorithm and flowchart
August,2020	23	Unit 1: Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. Uniform	Unit-2: Subgroups and examples of subgroups, centralizer, normalizer, centre of a group, product of	Unit-2: Transcendental and Polynomial equations: Bisection method, Newton's method, Secant method, Regula falsi method, fixed point	iii)Real Sequence, Bounded sequence, Cauchy convergence criterion for sequences. Cauchy's theorem on limits, order preservation and	Hons-20	Hons-4	iii)Solution of transcendental and algebraic equations by a. Bisection method b. Newton Raphson method.	Unit2: Fundamentals of Programming: Built in Data Types: int, float, double, char; Constants and Variables; first program: printf(), scanf(), compilation etc., keywords, Arithmetic

		continuity, non-uniform continuity criteria, uniform continuity theorem. Unit-2: Differentiability of a function at a point and in an interval, Caratheodory's theorem.	two subgroups.	iteration, Newton-Raphson method. Rate of convergence of these methods.	squeeze theorem, monotone sequences and their convergence (monotone convergence theorem without proof).	Gen-16		c. Secant method. d. Regula Falsi method	operators: precedence and associativity, Assignment Statements: post & pre increment/decrement, logical operators: and, or, not.
September, 2020	24	Unit -2 Algebra of differentiable functions. Relative extrema, interior extremum, theorem. Rolle's theorem. Mean value theorem, intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials.	Unit-3: Properties of cyclic groups, classification of subgroups of cyclic groups, Cycle notation for permutations, properties of permutations, even and odd permutations, alternating group, properties of cosets, Lagrange's theorem and consequences including Fermat's Little theorem.	Unit -3: System of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis, LU Decomposition.	iv)Infinite series. Cauchy convergence criterion for series, positive term series, geometric series, comparison test, convergence of p-series, Root test, Ratio test, alternating series, Leibnitz's test (Tests of Convergence without proof). Definition and examples of absolute and conditional convergence.	Gen-14 Hons-18	Hons-4	iv)Solution of system of linear equations a.LU decomposition method b. Gaussian elimination method c. Gauss-Jacobi method d. Gauss-Seidel method	Unit 3: Statements: Relational operators, ifelse statement, Iterative Statements: for loop, while loop and dowhile loop; controlling loop execution: break and continue, nested loop.
October,20 20	17	Unit-3: Cauchy's mean value theorem. Taylor's theorem with Lagrange's form of remainder, Taylor's theorem with		Unit-4: Interpolation: Lagrange and Newton's methods, Error bounds, Finite	v) Sequences of functions.	Hons-3		v) Interpolation a. Lagrange Interpolation b. Newton Interpolation	Unit 4 : Arrays: Definition & requirement, declaration & initialization, indexing, one

		Cauchy's form of remainder, application of Taylor's theorem to convex functions, relative extrema.		difference operators. Gregory forward and backward difference interpolations. Numerical differentiation.		Gen-3			dimensional array: finding maximum, minimum, simple sorting and searching.
November, 2020	08	Unit-3: Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, $\ln(1+x)$, $1/ax+b$ and $(1+x)n$. Application of Taylor's theorem to inequalities	Unit-4: External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem for finite abelian groups.	Unit – 5: Numerical Integration: Newton Cotes formula, Trapezoidal rule, Simpson's 1/3rd rule, Simpson's 7/8th rule, Weddle's rule, Boole's rule, Midpoint rule, Composite Trapezoidal rule, Composite Simpson's 1/3rd rule, Gauss quadrature formula. The algebraic eigenvalue problem: Power method.	vi)Series of functions, Pointwise and uniform convergence. Mn-test, M-test, Statements of the results about uniform convergence and integrability and differentiability of functions.	Gen-16 Hons-20	Hons-4	vi)Numerical Integration a. Trapezoidal Rule b. Simpson's one third rule c. Weddle's Rule d. Gauss Quadrature vii)Method of finding Eigen- value by Power method viii)Fitting a Polynomial Function	Unit 5 : Multi- dimensional arrays: Matrix Manipulations (Addition, Multiplication, Transpose) Arrays and Pointers, Memory allocation and deallocation: malloc() and free() functions
Decembr, 2020	26	•	Unit-5: Group homomorphisms, properties of homomorphisms, Cayley's theorem, properties of isomorphisms, First, Second and Third	Unit – 6: Ordinary Differential Equations: The method of successive approximations, Euler's method, the modified Euler method, Runge- Kutta methods of	vii)Power series and radius of convergence.	Hons-14	Hons-2	ix)Solution of ordinary differential equations a. Euler method b. Modified Euler method c. Runge Kutta method	Unit6: Functions: Why?, How to declare, define and invoke a function, Variables' scope, local& global variables and function parameters, Pointers, arrays as function parameters, return statement, Header

			isomorphism theorems	orders two and four.		Gen-08		files and their role. Illustrate different examples like swapping values, compute n!, nCr, find max/min from a list of elements, sort a set of numbers, matrix addition/multiplication etc.
	ng .e	S	SEMESTER-IV General Course	in:		MTMSSEC02M (For both Hons and Gen)		
٦ ا	No. of Teaching days available		Ionours Course	MTM A CODIOT		ing eacl	al rs	Marks:25
Month		MTMACOR08T Marks:50+25=75	MTMACOR09T Marks:50+25=75	MTMACOR10T Marks:50(Th)+	MTMGCOR04T Marks:50+25=75	ach of o	of of ore toni	Logic and Sets
M		Riemann Integration and	Multivariate	25(Prac) = 75	Algebra	Class teaching in hours of each core Tutorial In hours		
	√o. day	Series of Functions	Calculus	Ring Theory and	riigooru	las		
	4			Linear Algebra I				
		Unit -1: Riemann		Unit 1: Definition	Equivalence relation			Unit 1: Introduction,
		integration: inequalities of	Unit-1:	and examples of	and partitions, Functions			propositions, truth table,
21		upper and lower sums,	Functions of	rings, properties of	Composition o			negation, conjunction
20.	21	Darbaux integration, Darbaux theorem,	several variables, limit and	rings, subrings,	functions, Invertible	e <u>~</u>	4	and disjunction. Implications,
ıryʻ	21	Riemann conditions of	continuity of	integral domains and fields,	functions, One to one correspondence and	Hons-17	Hons-4	biconditional
nu	January, 2021	integrability, Riemann sum	functions of two	characteristic of	cardinality of a set	t. H	Η̈́	propositions, converse,
Ja		and definition of Riemann	or more variables	a ring. Ideal, ideal	Definition and example			contra positive and
		integral through Riemann	Partial	generated by a	of groups, examples o			inverse propositions and
		sums,	differentiation,	subset of a ring,	abelian and non-abelian			precedence of logical

		equivalence of two Definitions. Riemann integrability of monotone and continuous functions, Properties of the Riemann integral; definition and integrability of piecewise continuous and monotone functions. Intermediate Value theorem for Integrals	total differentiability and differentiability, sufficient condition for differentiability. Chain rule for one and two independent parameters,.	factor rings, operations on ideals, prime and maximal ideals.	groups, the group Zn of integers under addition modulo n and the group U(n) of units under multiplication modulo n.	Gen-8		operators.
February,2021	22	theorem for Integrals, Fundamental theorem of Integral Calculus. Unit-2: Improper integrals, Convergence of Beta and Gamma functions.	Unit- 1:Directional derivatives, the gradient, maximal and normal property of gradient, tangent planes, Extrema of functions of two variables, method of Lagrange multipliers, constrained optimization problems.	homomorphism's. Isomorphism theorems I, II and	Cyclic groups from number systems, complex roots of unity, circle group, the general linear group GLn(n,R), Groups of symmetries of (i) an isosceles triangle, (ii)an equilateral triangle, (iii) a rectangle, and (iv) a square.	Gen-8 Hons-17	Hons-4	Unit-1: Propositional equivalence: Logical equivalences. Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations.

		Dirichlet's condition. Examples of Fourier expansions and summation results for series.	Applications of line integrals: Mass and Work. Fundamental theorem for line integrals,	subspaces, null space, range, rank and nullity of a linear transformation.	ring of integers modulo n, ring of real quaternions, rings of matrices, polynomial rings, and rings of continuous functions.	Gen-7		Composition of relations, Types of relations, Partitions,
			conservative vector fields, independence of path.					
)21	23	Unit – 5: Power series, radius of convergence, Cauchy Hadamard Theorem. Differentiation and integration of power series;	Unit-4: Green's theorem, surface integrals, integrals over parametrically defined surfaces.	representation of a linear	Subrings and ideals, Integral domains and fields, examples of fields: Zp, Q, R, and C. Field of rational functions.	Hons-18	4.	Unit-3:Equivalence Relations with example of congruence modulo relation. Partial ordering relations, n- ary relations.
May,2021		Abel's Theorem; Weierstrass Approximation Theorem.	Stoke's theorem, The Divergence theorem.	Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.		Gen-7	Hons-4	
June,2021	26					Hons-	Hons-	
Jur						Gen-	I	

	days		SEMESTER-V		SEMESTER-V		ours		MTMSSEC01M (For both Hons
	gd		Honours Course			General Course		50	and General)
Month	No. of Teaching available	MTMACOR11T Marks:50+25=75 PDE and applications of ODE	MTMACOR12 T Marks:50+25=7 5 Group Theory— II	MTMADSE01T Marks:50+25=75 LPP	MTMADSE02T Marks:50+25=75 Number Theory	MTMGDSE01T Marks:50+25=75 Matrices	Class teaching in hours of each core	Tutorial in hours	Marks:25 C-Programming Language.
July,2020	27	Unit 1: Partial Differential Equations – Basic concepts and Definitions. Mathematical Problems. First- Order Equations: Classification, Construction and Geometrical Interpretation. Method of Characteristics for obtaining General Solution of Quasi Linear Equations.	Unit 1: Automorphism, inner automorphism, automorphism groups, automorphism groups of finite and infinite cyclic groups.	Unit 1: Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables,		Unit 1:R, R2, R3 as vector spaces over R. Standard basis for each of them. Concept of Linear Independence and examples of different bases. Subspaces of R2, R3.	Hons- 22 Gen- 12	Hons-4	Unit 1: Basics of Computer Programming: Definition, Requirement of programming language, Machine language, high-level programming languages, machine code of a program: compilation process, Problem solving approaches: algorithm and flowchart.

	1	1				T	г		
		Unit 1: Canonical	Unit 1:		Unit 1: Chinese	Unit 1: Translation,	Hons-		Unit2: Fundamentals
		Forms of First-	Applications of		Remainder theorem,	Dilation, Rotation,	22		of Programming:
		order Linear	factor groups to	Unit 1: Two-phase	Fermat's Little	Reflection in a			Built in Data Types: int,
		Equations.	automorphism	method. Big-M	theorem, Wilson's	point, line and			float, double, char;
		Method of	groups,	method and their	theorem.	plane. Matrix form			Constants and
	23	Separation of	Characteristic	comparison.		of basic geometric			Variables; first
20		Variables for	subgroups,	Unit 2 : Duality,	Unit 2 : Number	transformations.			<pre>program: printf(),</pre>
700		solving first order	Commutator	formulation of the	theoretic functions, sum	Interpretation of		4	scanf(), compilation
St,		partial differential	subgroup and	dual problem,	and number of divisors,	Eigen values and		Hons-4	etc., keywords,
August,2020		equations Unit 2:	its properties.	primal-dual	totally multiplicative	Eigen vectors for		Нс	Arithmetic operators:
Au		Derivation of	1 1	relationships,	functions.	such transformations			precedence and
		Heat equation,		economic		and Eigen spaces as			associativity,
		Wave equation		interpretation of		invariant subspaces			Assignment Statements:
		and Laplace		the dual.		1	Gen-		post & pre
		equation.					12		increment/decrement,
									logical operators: and,
									or, not.
		Unit2:	Unit 2:		Unit 2: Definition and	Unit 2: Types of	Hons-	Hon	Unit 3 : Statements:
		Classification of	Properties of	Unit 2:	properties of the	matrices. Rank of a	22	s-4	Relational operators, if-
		second order	external direct	Transportation	Dirichlet product, the	matrix. Invariance			else statement,
	24	linear equations as	products. the	problem and its	Mobius Inversion	of rank under			Iterative Statements: for
		hyperbolic,	group of units	mathematical	formula, the greatest	elementary			loop, while loop and
750		parabolic or	modulo n as an	formulation,	integer function,	transformations.			do-while loop;
September, 2020		elliptic. Reduction	external direct	northwest-corner	Euler's phi-function,	Reduction to normal			controlling loop
er		of second order	product,	method, least cost	Euler's theorem,	form, Solutions of			execution: break
🗑		Linear Equations	internal direct	method and Vogel	reduced set of residues.	linear homogeneous			and continue, nested
)te		to canonical	products,	approximation	Some properties of	and non-			loop.
Sel		forms.	Fundamental	method for	Euler's phi-function.	homogeneous			roop.
		Unit 3: The	Theorem of	determination of	Zaisi a pin rancuon.	equations with			
		Cauchy problem,	finite abelian	starting basic		number of equations			
		Cauchy-	groups.	solution, algorithm		and unknowns upto			
		Kowalewskaya	groups.	for solving		four.			
		ixowaicwskaya		transportation		Tour.			

	1	4h a a mana — Care -1	Τ	b1			Com	
		theorem, Cauchy problem of an		problem,			Gen- 12	
				assignment			12	
		infinite string,		problem and its				
				mathematical				
				formulation,				
				Hungarian method				
				for solving				
				assignment				
				problem.				
		Unit 3: Initial	Unit 3 : Group		Unit 3: Order of an	Unit 2: Matrices in		Unit 4 : Arrays:
		Boundary Value	actions,		integer modulo n,	diagonal form.	Hons-	Definition &
		Problems. Semi-	stabilizers and		primitive roots for	Reduction to	15	requirement,
	17	Infinite String	kernels,		primes, composite	diagonal form upto		declaration &
	1 7	with a fixed end,	permutation		numbers having	matrices of order 3.		initialization, indexing,
		Semi-Infinite	representation		primitive roots, Euler's	Computation of		one dimensional array:
		String with a Free			criterion,	matrix inverses		finding maximum,
		end. Equations	a given group		eriterion,	using elementary		minimum, simple
			action.			· ·		
						row operations.		sorting and searching.
		homogeneous	Applications of				G (
		boundary	group actions.				Gen-6	
		conditions. Non-	Generalized					
8		Homogeneous	Cayley's					
October, 2020		Wave Equation.	theorem. Index					
er,		Method of	theorem					
		separation of						
E		variables, Solving						
		the Vibrating						
		String Problem.						
		Solving the Heat						
		Conduction						
		problem						

November,2020	08	Unit 4: Central force.	Unit 4 : Groups acting on themselves by conjugation, class equation and consequences, conjugacy in Sn, p groups.	Unit 3: Game theory: Formulation of two person zero sum games.	symbol and its	Unit 3:Rank of matrix.	Hons-6 Gen-3	Hon s-4	Unit 5: Multi- dimensional arrays: Matrix Manipulations (Addition, Multiplicatio n, Transpose) Arrays and Pointers, Memory llocation and deallocation: malloc() and free() functions.
Decembr, 2020	26	Unit 4: Constrained motion, varying mass, tangent and normal components of acceleration, modelling ballistics and planetary motion, Kepler's second law.	Unit 4: Sylow's theorems and consequences, Cauchy's theorem, Simplicity of An for n ≥ 5, non-simplicity tests.	Unit 3 : Solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games.	Unit 3: Quadratic reciprocity, quadratic congruences with composite moduli, Public key encryption, RSA encryption and decryption, the equation $x2 + y2 = z 2$, Fermat's Last theorem.	Unit 3: Solutions of a system of linear equations using matrices. Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics.	Hons- 20 Gen- 08	Hon s-2	Unit6: Functions: Why?, How to declare, define and invoke a function, Variables' scope, local& global variables and function parameters, Pointers, arrays as function parameters, return statement, Header files and their role. Illustrate different examples like swapping values, compute n!, nCr, find max/min from a list of elements, sort a set of numbers, matrix addition/multiplication etc.

.

	days		SEMESTER-VI		SEMESTER-VI		urs		MTMSSEC02M (For both Hons
	No. of Teaching da available	Honours Course				General Course	n ho re	S	and General)
Month		MTMACOR13T Marks:50+25=75 Metric Spaces and Complex Analysis	MTMACOR14T Marks:50+25=75 Ring Theory and Linear Algebra II	MTMADSE04T Marks:50+25=75 Theory of Equations	MTMADSE06T Marks:50+25=75 Mechanics	MTMGDSE03T Marks:50+25=75 Numerical Methods		Tutorial in hours	Marks:25 Logic and Sets
January-2021	21	Unit-1: Metric spaces: Definition and examples. Open and closed balls, neighbourhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces. Sequences in Metric Spaces, Cauchy sequences. Complete Metric Spaces, Cantor's theorem.	Unit 1 : Polynomial rings over commutative rings, division algorithm and consequences, principal ideal domains,	Unit 1: General properties of polynomials, Graphical representation of a polynomial, maximum and minimum values of a polynomials, General properties of equations, Descartes's rule of signs positive and negative rule,	Unit 1: Co-planar forces. Astatic equilibrium. Friction. Equilibrium of a particle on a rough curve. Virtual work.	Unit 1: Algorithms, Convergence, Bisection method, False position method, Fixed point iteration method, Newton's method.	Hons- 18 Gen-9	9-suoH	Unit 1: Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contra positive and inverse propositions and precedence of logical operators.

	22	Unit 2:	Unit 1:	Unit 1 : Relation	Unit 1: Forces in three	Unit 1 : Secant	Hons-		Unit-1: Propos	ritional
	22	Continuous	Factorization of	between the roots	dimensions. General	method, LU	18		equivalence:	Logical
		mappings,	polynomials,	and the	conditions of	decomposition,	10		equivalences.	Logicai
		sequential	reducibility tests,	coefficients of	equilibrium. Centre of	Gauss-Jacobi,			Predicates	and
		criterion and other	irreducibility	equations.	gravity for different	Gauss-Seidel and		9-	quantifiers:	and
		characterizations	tests, Eisenstein		bodies. Stable and	SOR iterative		Hons-6	Introduction,	
		of continuity,	criterion, and		unstable equilibrium.	methods.		Hc	Quantifiers,	Binding
		Uniform	unique	Applications of	unstable equilibrium.	methods.	Gen-9		variables and	Dilluling
		continuity,	factorization in Z				Gell-9		Negations.	
		Connectedness,		function of the					riegations.	
		connected subsets	[x]. Divisibility in integral	roots.						
		of R.	in integral domains,	10018.						
		Compactness:	irreducible,							
		Sequential	,							
027		*	primes, unique factorization							
8,2		compactness, Heine-Borel	domains,							
			Euclidean							
		property, Totally bounded spaces,	domains.							
February,2021		bounded spaces, finite intersection	domains.							
		property, and								
		continuous								
		functions on								
		compact sets.								
		Homeomorphism,								
		Contraction								
		mappings, Banach								
		Fixed point								
		Theorem and its								
		application to								
		ordinary								
		differential								
		equation.								
		equation.		l		1				

	26	Unit 3: Limits,	Unit 2 : Dual	Unit 2:	Unit 2: Equations of	Unit 2:Lagrange and	Hons-		Unit 2: Sets, subsets,
		Limits involving	spaces, dual	Transformation of	motion referred to a set	Newton	22		Set operations and the
		the point at	basis, double	equations.	of rotating axes. Motion	interpolation: linear			laws of set theory and
		infinity,	dual, transpose	Solutions of	of a projectile in a	and higher order,			Venn diagrams.
		continuity.	of a linear	reciprocal and	resisting medium.	finite difference			Examples of finite and
		Properties of	transformation	binomial	Stability of nearly	operators			infinite
		complex numbers,	and its matrix in	equations.	circular orbits. Motion				sets. Finite sets and
1 -		regions in the	the dual basis,	Algebraic	under the inverse		Gen-		counting principle.
March,2021		complex plane,	annihilators.	solutions of the	square law.		10	∞	Empty set, properties of
h,2		functions of		cubic (Cardan's				Hons-	empty set. Standard set
ırc		complex variable,		method) and				H0]	operations. Classes of
M		mappings.		biquadratic					sets. Power set of a set.
		Derivatives,		(Ferrari's					
		differentiation		method).					
		formulas, Cauchy-		Properties of the					
		Riemann		derived functions.					
		equations,							
		sufficient							
		conditions for							
		differentiability.							

April,2021	23	Unit 4: Analytic functions, examples of analytic functions, exponential function, Logarithmic function, trigonometric function, derivatives of functions, and definite integrals of functions. Contours, Contour integrals and its examples, upper bounds for moduli of contour integrals. Cauchy-Goursat theorem, Cauchy integral formula.	Unit 2: Eigen spaces of a linear operator, diagonalizability, invariant subspaces and Cayley-Hamilton theorem, the minimal polynomial for a linear operator, canonical forms.	. Unit 3: Symmetric functions of the roots, Newton's theorem on the sums of powers of roots, homogeneous products, limits of the roots of equations.	Unit 2: Slightly disturbed orbits. Motion of artificial satellites. Motion of a particle in three dimensions. Motion on a smooth sphere, cone, and on any surface of revolution.	Unit 2: Numerical differentiation: forward difference, backward difference and central Difference	Unit 3: Difference and Symmetric difference of two sets. Set identities, Generalized union and intersections. Relation: Product set. Composition of relations, Types of relations, Partitions,
May,2021	23	Unit 5: Liouville's theorem and the fundamental theorem of algebra. Convergence of sequences and series, 20 Taylor series and its examples	Unit 3: Inner product spaces and norms, Gram-Schmidt orthogonalisation process, orthogonal complements, Bessel's inequality, the adjoint of a linear operator, Least Squares Approximation.	Unit 4: Separation of the roots of equations, Strums theorem.	Unit 3: Degrees of freedom. Moments and products of inertia. Momental Ellipsoid. Principal axes. D'Alembert's Principle. Motion about a fixed axis	Unit 2: Integration: trapezoidal rule, Simpson's rule,	Unit-3: Equivalence Relations with example of congruence modulo relation. Partial ordering relations, n- ary relations

Dinabandhu Mahavidyalaya, Bongaon. Academic Calendar, 2020-2021Department of Mathematics.

		26	Unit 6: Laurent	Unit 3: Minimal	Unit 4:	Unit 3: Compound	Unit 2: Euler's	
			series and its	solutions to	Applications of	pendulum. Motion of a	method for solving	
			examples,	systems of linear	Strum's theorem,	rigid body in two	ordinary differential	
3	21		absolute and	equations,	Conditions for	dimensions under finite	equations.	
{	,2021		uniform	Normal and self-	reality of the roots	and impulsive forces.		
	ne		convergence of	adjoint operators,	of an equation.	Conservation of		
١	루		power series.	Orthogonal	Solution of	momentum and energy		
				projections and	numerical			
				Spectral	equations			
				theorem.				